Kenetli Metal Çatı Kaplama Sistemleri

Kenetli Metal Çatı Kaplama Sistemleri

Kenetli Metal Çatı Kaplama Sistemleri

Kenetli Metal Çatı Kaplama Sistemleri için DIN 18339’a göre Rüzgar Güvenliği Açısından İlkesel Tasarım Öneriler

 

 ÖZET Kenetli metal çatı kaplama sisteminin olumlu özelliklerine rağmen; diğer çatı kaplama sistemlerinde de rastlanan, tasarım veya yapım sürecindeki hatalardan kaynaklanan hasarlar oluşabilmektedir. Kenetli metal kaplamalı çatılardaki hasarların etkenlerinden biri de rüzgardır. Çatı kaplamasına etkiyen rüzgar yükü, binanın herhangi başka bir bileşenine göre daha etkili olmaktadır. Çalışma kapsamında kenetli metal çatı kaplamalarının rüzgar güvenliğinin sağlanmasında kullanılabilecek ulusal ve uluslararası standart, yönetmelik ve kılavuzlar incelenerek analiz edilmiştir. Bu bağlamda, Alman standartı DIN 18339 ayrıntılı şekilde ele alınmış, kenetli metal çatı kaplama sistemleri için rüzgar güvenliği açısından ilkesel tasarım önerileri ve tasarım sürecinde kullanılabilecek bir kontrol listesi derlenmiştir. anahtar kelimeler: kenetli metal çatı kaplama, rüzgar güvenliği, çatı tasarımı ABSTRACT Despite the promising performance properties of standing seam metal roofing systems, failures may occur due to design and application flaws. One of the most frequent damages is the result of wind effects on roofs, since wind loads on the roof finishings are greater than on any other component of the building. In the scope of the study, some national and international standards, codes and manuals are investigated that can be used for wind safety in standing seam metal roofing systems. The German standard DIN 18339 is analysed in detail, and a control list of principal design instructions of standing seam metal roofing systems in regard to wind safety is suggested. keywords: standing seam metal roofing, wind safety, roof design

 

1. Giriş Kenetli metal çatı kaplama sistemleri; kaplama levhası, ayırıcı tabaka ve su yalıtım örtüsü, sabit ve kayar metal klipsler, vidalar ya da çiviler ve kör kaplamadan oluşmaktadır ve kenetleri tek bükümlü veya çift bükümlü olabilmektedir

[1, 2]. Sistemin, diğer birçok çatı kaplama alternatifine göre yapım ve performans ile ilgili bazı avantajlarından söz etmek olanaklıdır. Rulo halinde istenilen boylarda üretilebilen metal levhalar, karmaşık biçimlerdeki ve özellikle eğrisel yüzeylere uygulamada kolaylık sağlamaktadır

[3]. Sistemi oluşturan malzemelerin hafif olması, çatı sistemine gelen yükün azalmasına ve taşıyıcılık performansının iyileşmesine katkıda bulunmaktadır

[4]. Metallerin bünyelerine su almayışları ve uygun şekilde tasarlanıp uygulanmış kenet bölgesinin su geçirimsizliği, sistemin birinci su geçirimsizlik işlevini üstlenmesi, metal kaplamanın altında bulunan su yalıtım örtüsünün de ikincil bir su geçirimsizlik önlemi oluşu, sistemin su ile ilgili performans düzeyini yükseltmektedir

 Metallerin sıcaklık farklarına bağlı olarak gerçekleşen ısıl genleşmeden kaynaklı boyutsal değişimler ise sistemin tüm çatı yüzeyinde parçalı uygulanması ve birleşimlerinin hem sabit hem kayar klipslerle sağlanması sayesinde tolere edilebilmektedir

[5]. Kenetli metal sistemlerde kör kaplamanın alt tarafında öngörülen havalandırma tabakası ile genelde yeterli düzeyde yoğuşma kontrolünü sağlanabilmektedir. Bu özellik, iyileştirilmiş nem performansı ile birlikte metale temas edecek yoğuşma suyunu ortadan kaldırması ile, farklı metallerden klipsler ve çatı kaplaması söz konusu ise, bunlar arasında oluşabilecek elektrokimyasal etkileşimlere izin vermemekte ve korozyona bağlı olası çatı hasarlarını en aza indirmektedir

Sistemin tüm olumlu özelliklerine rağmen; diğer çatı kaplama sistemlerinde de rastlanan, tasarım veya yapım sürecindeki hatalardan kaynaklanan hasarlar oluşabilmektedir

Kenetli metal kaplamalı çatılardaki hasarların etkenlerinden biri de rüzgardır. Bunun nedeni, çatı kaplamasına etkiyen rüzgar yükünün, binanın herhangi başka bir bileşenine göre daha etkili olmasıdır

 Sistemin tasarımında, etki edecek rüzgar yükünün öngörülmemesi; hatalı sistem seçimi gibi nedenler hasar oluşma riskini arttırmaktadır. Bu durumda; kuvvetli rüzgarlarda, çatı kaplamaları en sık zarar gören ve onarılması veya yenilenmesi en maliyetli yapı elemanı bileşeni olarak karşımıza çıkmaktadır

 Rüzgarın binadaki etki kombinasyonlarının doğru şekilde ortaya konması, bina ölçeğinde biçim verme ve taşıyıcı sistemin tasarımıyla birlikte, çatı tasarımında da yol gösterici rol oynar. Mekanik yollarla tespit edilen kenetli metal çatı kaplama sistemlerinin tasarımında malzeme ve bileşenlerin farklı kombinasyonlarda deneysel olarak rüzgar tüneli testleriyle rüzgar güvenliğinin saptanması mümkündür. Bunun dışında, standartlara dayalı hesaplama yöntemleriyle de rüzgar güvenliği belirli bir seviyeye çıkarılabilmektedir. Ancak hesaplama yöntemlerinin mimar tarafından kullanılması nadir görülen bir durumdur

 Rüzgar yükü hesabı, tasarım ekibinde yer alan mühendis ya da rüzgar güvenliği konusunda uzmanlaşmış kişilerce yapılmaktadır. Bununla birlikte; mimarın bu formüle aşina olması, rüzgarın binaya ve çatı tasarımına nasıl etkide bulunacağını öngörmesi ve mühendisle işbirliği içinde çalışabilmesi açısından önemlidir

6-Bu nedenle; kenetli metal çatı kaplama sisteminin, tasarım ve uygulamasının ilkesel ve basit düzeyde tariflendiği kurallara ihtiyaç duyulmaktadır. Bu çalışma ile, kenetli metal çatı kaplama sistemlerinin tasarım ve uygulamasına ilişkin genel kuralların tanımlanmış olduğu kitaplar ve el kitapları araştırılmıştır. Bunun dışında, kenetli metal çatı kaplamalarında rüzgar dayanımının sağlanmasına yönelik ulusal ve uluslararası standart, yönetmelikler ve kılavuzlar incelenmiş ve bunların arasından Alman standartı DIN 18339 daha ayrıntılı analiz edilerek ilkesel bir ön boyutlandırma yaklaşımı önerilmiştir.

 Çatılarda rüzgar etkisi ve kenetli metal çatı kaplamalarında meydana gelebilecek hasarlar Metal çatılarda rüzgar etkisi kendini öncelikle çatıların saçak bölgesinde ya da çatı-dış duvar birleşimlerinde çatının sonlandığı kenarlarda göstermektedir. Bu bölgelerde oluşan hasarlar kısa süre içerisinde tüm çatı sisteminde hasara yol açmaktadır

[7]. Kenetli metal çatılarda rüzgar güvenliğini ölçmeye yönelik yeterli düzeyde test standartlarının ve tüm kenetli metal çatılarına uygulanabilecek kapsayıcılıkta tasarım/yapım ilkelerinin olmayışı bu çatılarda hasarların başlıca sebebidir

 Doğru tasarımların ve uygulamaların yapılması, öncelikle rüzgarın binaya ve çatıya nasıl etki ettiğini öngörmeyi gerektirir.

8. Ulusal Çatı & Cephe Sempozyumu 2 - 3 Haziran 2016 Mimar Sinan Güzel Sanatlar Üniversitesi Fındıklı - İstanbul 2.1. Çatılarda rüzgar etkisi Rüzgar, üç boyutlu ve çok yönlü olan, yatay ve düşey bileşenleri arasındaki düşey doğrultulu etkisi çok daha az olduğundan yatay doğrultulu hava akımı olarak tanımlanmaktadır

 Rüzgar, binanın yüzeylerine aerodinamik basınç uygular ve bu basıncın etkisi binanın araziye konumlanışı ile ilintilidir. Rüzgar, estiği yöndeki bina yüzeyine dik olarak yayılı yük oluşturur ve pozitif bir basınç uygular. Etkitepki prensibine bağlı olarak rüzgarın binanın direkt etki etmediği ve binayı terk ettiği yüzeyinde negatif basınç oluşur ve çekme etkisi yaratır

 Bu nedenlerle bina araziye, hakim rüzgar yönüne ve bölgedeki rüzgar hızlarına uygun olarak konumlandırılmalıdır. Rüzgar bina yüzeyinden yukarı doğru hareket ettikçe hızlanır ve çatıyı binadan ayırma eğiliminde bulunur. Bu durum çatının üst yüzeyinde negatif basınç bölgeleri meydana getirir. Çatının biçimine bağlı olarak yüksek çekme etkileri hem rüzgar alan saçaklarda hem de mahyada kendini gösterebilmektedir. Çatıda oluşan basınç farkları, çatının eğimine göre değişiklik göstermektedir

 Çatının dış duvar ile birleşiminde saçakların bulunması ise saçağın alt yüzeyinde pozitif basınç, üst yüzeyinde negatif basınç oluşturarak yine çatının binadan uçma riskini doğurur

Binalarda ve az eğimli çatılarda rüzgar etkisi [6] Şekil 2: binalarda ve çok eğimli çatılarda rüzgar etkisi [6] Şekil 3: saçaklarda rüzgar etkisi [6] 2.2. Çatılarda rüzgar kaynaklı hasarlar Rüzgarın neden olduğu hasarlarda bina ölçeğinde dört temel etmen sıralanabilir

 Binanın çevresindeki hava akımı tarafından yaratılan aerodinamik basınç

 Bina kabuğundaki duvar boşlukları ya da yarık/yırtık vb. nedeniyle oluşan iç basınç farklılaşmaları

 Rüzgarın taşıdığı parçacıkların çarpma etkisi

 Ani atmosferik basınç değişimlerinin yarattığı basınç ve çekme etkileri Rüzgarın estiği yönde çatı saçağının alt yüzeyinde rüzgar kaynaklı basınç etkisi ile tersi yönde ve çatı saçağının üst yüzeyinde meydana gelen alçak basınç bölgeleri sonucundaki çekme etkisi, çatı yapı elemanın bütününde olduğu gibi, kenetli metal çatı kaplamalarında da hasarlar meydana getirebilmektedir

 Bu hasarlardan sık karşılaşılanları ve hasara neden olan etkenleri şu şekilde sıralamak mümkündür

[9]: Hasarlar:

 Kenetin klipsten sıyrılması

 Klipslerin vida/çividen ayrılması

 Vida/çivinin kör kaplamadan çıkması Etkenler:

  Rüzgarın tüm çatı sisteminde meydana getirdiği titreşim  Kör kaplamayı oluşturan levhaların arasındaki derzlerden geçen havanın, bu bölgenin üzerinde kalan kenetli metal levhalara iç taraftan oluşturduğu basınç etkisi  ABD’deki bir kenetli metal kaplamada kuvvetli rüzgar kaynaklı oluşmuş hasar  Türkiye’deki bir kenetli metal kaplamada kuvvetli rüzgar kaynaklı oluşmuş hasar

 Kenetli metal çatı kaplama sistemlerinin tasarımında rüzgar güvenliği Rüzgar kaynaklı çatı hasarlarının önüne geçilmesinde iki aşamalı bir tasarım yaklaşımı benimsenebilir: çatı “gövde”sinin bina taşıyıcı sistem bileşenlerine emniyetli bağlantısının sağlanması; çatı kaplama ve yalıtım katmanları ile bileşenlerinin çatı “gövde”sine emniyetli bağlantısının sağlanması .

Her iki aşama da son derece ayrıntılı tasarım kural ve kararları içermesine ve bütüncül bir tasarım için birlikte düşünülmeleri gerekmesine rağmen; kenetli metal çatı kaplama sistemlerinde rüzgar güvenliği kapsamında ikinci aşama ele alınacaktır. Çatı kaplama ve yalıtım katmanları ile bileşenlerinin çatı “gövde”sine bağlantısının emniyetli olması rüzgarın çekme kuvveti ile doğrudan ilişkilidir ve bu bağlamda çatı tasarımında iki temel nokta göz önünde bulundurulmalıdır

 Çatı konstrüksiyonuna etki edecek çekme kuvvetinin en büyük değerinin belirlenmesi,

Çatı konstrüksiyonu bağlantılarının, oluşabilecek en büyük çekme kuvvetine eşit veya daha büyük dayanımlı tasarlanması. Rüzgar kuvvetlerinin çatı konstrüksiyonuna etkisinin belirlenmesinde ulusal ve uluslararası düzeyde yapılan literatür araştırmasında çeşitli standart ve yayın örnekleri incelenmiştir. Bunlardan ASCE 7-05 “Minimum Design Loads for Buildings and Other Structures”, binanın taşıyıcı sistemine ve yapı elemanlarına etki eden tüm yükleri içeren bir ABD standartıdır

Rüzgar yükleri ile ilgili bölümü, rüzgar yükü hesabının tüm çatı formlarında yapılabilmesini sağlayan kapsayıcılıktadır. Çatılarda rüzgar yükü hesabında kullanılabileceği tespit edilen üç yöntem sunmaktadır 

 Yöntem 1- basitleştirilmiş yöntem: Düzenli ve basit formlara sahip, 18 metreyi aşmayan binaların teras, beşik ve kırma çatı yüzeylerinde; temel rüzgar hızı, bina önem katsayısı, yükseklikle değişen etkilenme katsayısı ve yüzey pürüzlülük katsayısı ile kurulan bir denklemle hesaplanan rüzgar basıncının verilen sınır değerlere göre kontrolünü sağlamaktadır.

Yöntem 2 - analitik yöntem: Düzenli ve basit formlara sahip binaların çatı yüzeylerinde; temel rüzgar hızı ve rüzgar yönü faktörü, bina önem katsayısı, yükseklikle değişen etkilenme katsayısı, rüzgar hız basıncı, topoğrafya katsayısı, türbülans şiddeti, iç ve dış yüzey basınç katsayıları ile binanın bulunduğu rüzgar bölgesine, bina kabuğundaki boşlukların oranına ve çatının biçimine göre rüzgar yükü hesabı yapılmasını sağlayan ayrıntılı bir hesap yöntemidir.

Yöntem 3 - rüzgar tüneli testi: Basit veya karmaşık formlu tüm binalar için uygulanabilen deneysel yöntemdir. TS 498 “Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri” yapı elemanlarına etki eden tüm yükleri içeren Türk standartıdır. Rüzgar yükü hesabı tüm yapı elemanları genelinde ele alınmış olup çatıya özgü durumlar belirtilmemiştir. Hesaplanan rüzgar yükü; binanın aerodinamik yük katsayısına, emme hız basıncına ve etkilenen yüzey alanına bağlı bir denklemle yapılmaktadır. Rüzgar hız ve basınç değerleri, binanın zeminden yüksekliğine göre dört sınıfta toplanmıştır. 

Rüzgar güvenliğine bina ve yapı elemanı ölçeklerinde genelgeçer kurallara yer vermişlerdir. Bu standartların yanısıra, bileşen/malzeme ölçeğine inen şu kaynaklar incelenmiştir: Bağımsız bir ABD sertifikasyon kuruluşu olan Underwriters Laboratories, Inc. (UL) bazı metal kaplamalı çatı sistemlerini değerlendirerek rüzgar yüküne dayanımları bakımından sınıflandırmalar yapmıştır.

Ancak değerlendirilen rüzgar yükleri statik rüzgar yüklerini ele almakta olup; dinamik rüzgar yüklerini kapsamamaktadır .

UL 580 standardına göre tanımlanan test yönteminde, belli değerlerdeki basınca neden olan rüzgar hızlarına dayanım gösteren çatı sistemlerinin UL30, UL60 (yarıdayanıklı) veya UL90 (tam dayanıklı) sertifikası alabilecek nitelikte oldukları belirtilmektedir . Bağımsız bir diğer ABD kuruluşu olan Factory Mutual Insurance Company (FM)’nin yayınlarında ise çeşitli çatı konstrüksiyonları ve sahip oldukları rüzgar basınç dayanımları listelenmiştir.

Rüzgar basınç dayanımları UL’de olduğu gibi statik test yöntemleriyle belirlenmiştir ve rüzgar kaynaklı dinamik basınçları kapsamamaktadır.

Çatı konstrüksiyonunun tamamını ele alarak hesaplanmış değerleri vermektedir; bu nedenle kaplama sistemlerine yönelik bir tasarım yaklaşımı sunmamaktadır ve rüzgar güvenliği belli değerlerle tanımlanmış olan bir çatı konstrüksiyonunda herhangi bir bileşenin değişimi rüzgar basınç dayanımını değişterecektir. UL standartlarına benzer bir sınıflandırması olup, çatıların sahip olduğu rüzgar basınç dayanımlarına göre Class 1-60, Class 1-75 vb. isimlerle onay belgeleri vermektedir. 

DIN 18339 “Klempnerarbeiten”, çatı ve cephede uygulanan kenetli ve çıtalı metal kaplama sistemlerinin bileşenlerine çevresel etmenlerin nasıl etki ettiğini açıklayan ve tasarımını “tanımlayan” bir Alman standartıdır.

Rüzgar güvenliği konusuna geniş yer verilmiş olup; binanın bulunduğu rüzgar bölgesine, binanın zeminden yüksekliğine, çatı biçimine ve çatı eğimine göre oluşan rüzgar yüklerine karşı metal kaplama sistem bileşenlerinin boyutları, miktarı ve yüzey üzerindeki yerleri verilen tablolar yardımıyla adım adım belirlenebilmektedir

İncelenmiş olan standartlar ve kılavuzlar [ aracılığıyla, binalara ve çatılara etkiyen rüzgar yükleri, geliştirilmiş hesaplama yöntemleri veya hazır verilmiş tablolar yardımıyla belirlenebilmekte olmalarına rağmen; DIN 18339 dışında, çatı konstrüksiyonu bileşenlerinin ve bağlantılarının rüzgar güvenliği ölçütleriyle tasarlanmasına ilişkin kurallara rastlanmamıştır. Söz konusu standartlar ve kılavuzlar “performans” yaklaşımlı olduklarından daha genelgeçer kuralları içermekte, tasarım ve uygulamaya konması için daha uzun süreler gerektirmektedir. Sadece kenetli ve çıtalı metal kaplama sistemlerini kapsayan Alman standartı DIN 18339 “Klempnerarbeiten” ise; Almanya için, ampirik bilgilerle “tanımlayıcı” bir ön tasarım yöntemi sunmaktadır Bu bağlamda, DIN 18339 analiz edilerek, kenetli metal çatı kaplama sistemleri için rüzgar güvenliği açısından ilkesel tasarım önerileri ve tasarım sürecinde kullanılabilecek bir kontrol listesi derlenmiştir..

Kenetli Metal Çatı Kaplama Sistemleri için DIN 18339’a göre Rüzgar Güvenliği Açısından İlkesel Tasarım Önerileri DIN 18339 “Klempnerarbeiten”, kenetli metal çatı kaplama sistemlerinin tasarımında doğrudan kullanılabilecek bir standarttır. Çıtalı ve kenetli metal çatı kaplama sistemleri ile metal duvar kaplamalarının tipik tasarımını ve uygulamalarını tarifleyerek kurallara bağlamaktadır. Titanyum-çinko, çelik, paslanmaz çelik, bakır, alüminyum ve kurşun kaplamalar için geçerlidir. Kenetli metal çatı kaplama sistemlerine yönelik kısıtlı bir kapsamı olması ve kurallarla tanımlayıcı özelliği nedeniyle, daha önce sayılmış olan standartlardan farklıdır ve kenetli bir metal çatı kaplama sisteminin hesaplama yöntemleriyle yapılacak ayrıntılı tasarımından önceki ön boyutlandırma aşamalarında hızlıca ön kararlar vermeyi sağlayacak ve kullanım evresinde doğabilecek riskleri azaltacak niteliktedir.

Kenetli metal çatı kaplama sistemlerinin ön tasarımında rüzgar güvenliğinin sağlanmasına yönelik öneriler DIN 18339’un ayrıntılı analizi sonucunda çıkarılan ölçütler ile kenetli metal çatı kaplama sistemlerinin rüzgar güvenliğine yönelik ön tasarımı bina ölçeği ile ilişkili olarak yapılabilmektedir. Bu bağlamda kenetli metal çatı kaplama levhaları, kör kaplamalar, birbirlerine tutturulma yöntemleri, her bileşenin

İstanbul malzemesi ve boyutları belirli ölçütlerle belirlenebilmekte ve bir sonraki aşamada daha ayrıntılı yapılacak olan hesaplamalı tasarıma entegre edilebilmektedir.

Kenet aralığı İki kenet arasındaki en büyük mesafenin (maksimum kenet aralığı) bina yüksekliğine göre belirlenmesi gerekmektedir . Kenet aralığı; 10 m’ye kadar olan binalar, 10-20 metre, 20-50 metre ve 50-100 metre arası yükseklikteki binalar için farklı değerler almaktadır. Buna göre en küçük maksimum kenet aralığı 520 mm; en büyük maksimum kenet aralığı 720 mm’dir. Bina yüksekliğinde dikkat edilmesi gereken ise; bina yüksekliği olarak binanın topoğrafyaya oturduğu en alçak noktasından çatının en yüksek noktasına olan uzaklığın alınmasıdır. “bükülmüş levha genişliği”nin (kenet aralığı) belirlenmesini etkileyen etmenler  alınması gereken bina yüksekliği değeri

Kaplama levhası kalınlığı Bina yüksekliğine bağlı seçilen maksimum kenet aralıkları için metal kaplamanın malzemesine göre izin verilen minimum levha kalınlıkları belirlenmelidir. Örneğin, kenetli titanyum-çinko kaplama levhası her yükseklikte ve her kenet aralığında 0.7 mm kalınlığında iken; kenetli alüminyum kaplama levhası 10 metre yüksekliğe kadarki binalarda 620 mm kenet aralığına sahipse 0.8 mm, 520 mm kenet aralığına sahipse 0.7 mm kalınlığında olması önerilmektedir. Bu kalınlıklar, rüzgarın çekme ve basınç etkilerine karşı mekanik dayanımın sağlanması için göz önünde bulundurulması gereken kurallardır. bina yüksekliği kenet aralığı “levha kalınlığı”nı belirlenmesini etkileyen etmenler Klips malzemesi ve kalınlığı Metaller elektrolit sıvının varlığında iyon alışverişi yaparak elektrokimyasal bir reaksiyon başlatırlar ve galvanik korozyona uğrarlar.

Bu nedenle kenetli metal çatı levhası ile bu levhayı kör kaplamaya tutturmada kullanılan metal klipslerin yağmur suyu veya yoğuşma suyundan zarar görme riski vardır. Bu bakımdan, kullanılacak olan levha malzemesine uygun klips malzemesinin seçimi önem kazanmaktadır. Çatı kaplama veya klips malzemesi olarak kullanılabilecek olan metallerden alüminyum, çinko, demir, kalay, kurşun, bakır; yazıldığı sırada birbirinden uzaklaştıkça, aralarında oluşacak elektrokimyasal gerilimler artmaktadır. Örneğin, alüminyum ve çinkonun bir arada kullanımı uygun bir kararken; çinko çatı kaplama levhası ile bakır klipslerin arasındaki galvanik korozyon çok şiddetli olacaktır. Klips kalınlığı ise, mekanik dayanıma uygun olarak seçilmelidir ve kalınlık alternatifleri malzemesine göre değişkenlik göstermektedir. Örneğin, titanyum-çinko çatı kaplama levhası paslanmaz çelik klipslerle tutturulacaksa en az 0.4 mm kalınlığında klipsler; titanyumçinko klipslerle tutturulacaksa en az 0.8 mm kalınlığında klipsler öngörülmelidir. Şekil 9: “klips kalınlığı”nın belirlenmesini etkileyen etmenler.

Kör kaplama Klipslerin tespit edildiği kör kaplama, ahşap veya ahşap kökenli kompozit levha olmalıdır. Kör kaplamanın kalınlığı için, kaplama levha malzemesine ve kör kaplama malzemesine göre minimum değerler öngörülmüştür. Kör kaplama malzemesi ahşap kökenli kompozit ise en az 22 mm, ahşap ise en az 24 mm; kaplamanın kurşun olması durumunda kör kaplamanın kalınlığı en az 30 mm olmalıdır. levha kalınlığı bina yüksekliği kenet aralığı levha malzemesi levha malzemesi klips malzemesi klips kalınlığı  “kör kaplama kalınlığı”nın belirlenmesini etkileyen etmenler.Bağlantı malzemeleri Klipsleri kör kaplamaya tespit eden bağlantı bileşenlerinin malzemesi ve boyutları, klips malzemesi ve kalınlığına göre seçilmelidir. Klipslerin kör kaplamaya tespitinde havşa başlı vida kullanılması durumunda, farklı klips malzemeleri ve kalınlıklarına göre paslanmaz ya da galvanizli çelik vidalar öngörülmeli ve bunların boyutları en az 4x25 mm (çap x boy) olmalıdır. Vida yerine çivi kullanılması durumunda ise, farklı klips malzemeleri ve kalınlıklarına göre paslanmaz ya da galvanizli çelik veya bakır vidalar en az 2.8x25 mm (çap x boy) boyutlarında kullanılmalıdır. Her klips en az iki adet çivi/vida ile; kör kaplamaya en az 20 mm derinlikte işleyecek biçimde tespit edilmelidir. “bağlantı malzemesi”nin belirlenmesini etkileyen etmenler.

Klips adedi ve aralığı Klips adedi ve klips aralığının belirlenmesinde birçok etmen rol almaktadır 

 Rüzgar bölgesi: Almanya için, bölgesel rüzgarların ve topoğrafyanın rüzgar yüklerinin büyüklüğüne etkisine göre Eurocode 1 ve DIN 1055-4’te haritalanan dört rüzgar bölgesi için her bir çatı biçimi, çatı eğimi ve bina yüksekliğine bağlı olarak m2 başına klips adedi ve klips aralıkları verilmiştir.

 Bina yüksekliği: Tüm rüzgar bölgelerinde her yükseklikte bina tasarlamak mümkün olmasına rağmen; kenetli metal çatı kaplama sistemlerindeki kenet aralığının belirlenmesinde bina yüksekliği girdilerden biridir ve kullanılacak klips adedi ile klips aralığını etkilemektedir.

 Kenet aralığı: Bina yüksekliğine göre tanımlanan kenet aralığı değerleri için, m2 başına klips adedi ve klips aralıkları değişkenlik göstermektedir.  Çatı biçimi: Yönetmeliklerin izin verdiği tüm biçimlerde (düz, beşik, tek eğimli, kelebek ve kırma) çatı tasarlamak mümkün olmasına rağmen; binanın bulunduğu rüzgar bölgesine göre her bir çatı biçimi için farklı klips adedi ve klips aralığı belirlenmiştir.

 Çatı eğimi: Tanımlı rüzgar bölgelerinde bina yüksekliği ve çatı biçimi ile birlikte kenet aralıkları belirlendikten sonra, çatıların maksimum 30º veya 30º den büyük eğimlerde olmasına göre, m2 başına klips adedi ve klips aralıkları verilmiştir.

 Klipslerin çatı yüzeyindeki yeri: Klips adedi ve klips aralığı, çatı yüzeyindeki yerine göre de değişkenlik göstermektedir. Klipslerin çatı yüzeyindeki yerleri çatı biçimine ve bina kör kaplama malzemesi levha malzemesi kör kaplama kalınlığı klips malzemesi bağlantı malzemesiboyutlarına göre bölge sınırları değişen F, G, H harfleri ile isimlendirilmiştir; klips adedi ve klips aralıkları köşe bölgesi (F), saçak ve kalkan duvarı kenarı orta bölgesi (G), normal bölge (H) için farklılık göstermektedir. Örneğin, rüzgar bölgesi 1’de yer alan Münih’te tasarlanan 6 metre yüksekliğe sahip bir binanın 25º eğimli beşik çatısı için 590 mm kenet aralığı öngörülmüşse; çatı yüzeyinin F bölgesinde 330 mm aralıklarla  adet/m2 klips, G bölgesinde 420 mm aralıklarla  adet/m2 klips, H bölgesinde 500 mm aralıklarla  adet/m2 klips kullanılmalıdır. “klips adedi ve aralığı”nın belirlenmesini etkileyen etmenler. çatı yüzeyinin plan çizimi üzerinde F, G, H bölümlerine ayrılması [14, 15] 4.2. Rüzgar güvenliği sağlanmasına yönelik kenetli metal çatı kaplama sistemlerinin tasarım sürecinde kullanılabilecek bir kontrol listesi DIN 18339’un analizi sonucu çıkarılan ölçütler, kenetli metal çatı kaplama sistemlerinin tasarımında kullanılabilecek bir “kontrol listesi” niteliğinde aşağıdaki sırada özetlenebilir:

 Kaplama metal levha malzemesinin seçilmesi klips adedi ve klips aralığı rüzgar bölgesi çatı biçimi çatı eğimi çatı yüzeyindeki yeri kenet aralığı bina yüksekliği

 Bina yüksekliğine göre kenet aralığının belirlenmesi (mekanik/rüzgar yüküne dayanım)

 Bina yüksekliğine, kaplama metal levha malzemesine ve kenet aralığına göre levha kalınlığının belirlenmesi (mekanik/rüzgar yüküne dayanım)

 Kaplama metal levha malzemesine göre klips malzemesinin seçilmesi (galvanik korozyon)

 Klips kalınlığının belirlenmesi (mekanik/rüzgar yüküne dayanım)

 Kör kaplama malzemesinin seçimi ve kalınlığının belirlenmesi (mekanik/rüzgar yüküne dayanım)

 Klips ile kör kaplama arasındaki bağlantı bileşeninin tipinin ve malzemesinin seçilmesi (galvanik korozyon)

 Klips ile kör kaplama arasındaki bağlantı bileşeninin boyutlarının ve klips başına adedinin belirlenmesi (mekanik/rüzgar yüküne dayanım)

 Birim alandaki klips adedinin ve klips aralığının belirlenmesi (mekanik dayanım) 5. Tartışma ve sonuç Kenetli metal çatı kaplama sistemlerinde rüzgar güvenliğinin sağlanması ve yapı hasarlarının önlenmesi; binanın bulunduğu topografik ve iklimsel veriler dikkate alınarak bina, çatı ve bileşen/malzeme ölçeklerinin tümünde rüzgarın oluşturacağı basınç ve çekme etkilerine dayanımlı tasarlanmasına bağlıdır. Çalışma kapsamında incelenen, DIN 18339 dışındaki tüm standart ve kılavuzların, rüzgar güvenliğine bina ve/veya yapı elemanı ölçeğinde değindiği görülmüştür. Yapı elemanında meydana gelen rüzgar yüklerinin hesaplanma yöntemleri verilmiştir; ancak bu yüklere yeterli dayanıma sahip sistemlerin nasıl tasarlanacağına yönelik tanımlar ve kurallar koyulmamıştır. Bu durum, kenetli metal çatı kaplama sistemlerinin tasarımında rüzgar güvenliğini genellikle tasarım ekibi dışından uzmanlara bırakmakta ve sürecin uzamasına yol açmaktadır. Bu nedenle, standartların içerdiği performans temelli yaklaşımların yanında, bileşen ölçeği tasarımında tarifleyici kurallara ihtiyaç duyulmaktadır. DIN 18339 ise, bileşen ölçeğinde çeşitli performans ölçütleriyle beraber rüzgar güvenliği ile ilgili ayrıntılı içeriği sayesinde, kenetli metal çatı kaplama sistemlerinin tasarımını “tanımlayıcı” kurallara bağlaması sebebiyle, tasarımcıya rüzgar yükü hesaplama yöntemlerine başvurmadan önce yararlanabileceği bir ön boyutlandırma yöntemi sunması açısından, rüzgar kaynaklı çatı hasarlarına neden olan tasarım eksikliğini kapatacak niteliktedir.

Bu bağlamda DIN 18339 analiz edilerek; çatılarda uygulanan kenetli metal kaplama sistemleri tüm bileşenlerine ayrılmış ve çatı konstrüksiyonu bileşenlerinin ve bağlantılarının rüzgar güvenliği ölçütleriyle tasarlanmasına ilişkin yönlendirici kurallar adım adım tariflenerek bir kontrol listesi oluşturulmuştur. Bu kontrol listesinin kullanılabilirliği ise kısıtlıdır. Bunun nedeni, DIN 18339’un bir Alman standartı oluşu ve burada tanımlanan tasarım kurallarının dayanağının, Almanya’nın iklimsel ve topografik verileri ile genel-geçer kuralların tanımlanmış olduğu diğer Alman standartları olmasıdır. Kontrol listesi biçiminde derlenen ilkesel tasarım adımlarının Türkiye’de tam anlamıyla kullanılabilmesi için ise, yürürlükte olan “TS 498 Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri” isimli standartın içerdiği hesap yöntemine entegrasyonunun sağlanması ve tasarımda kullanılan verilerin birbirine uyarlanması gereklidir. Ancak TS 498’in kapsamlı bir içeriği olmasına rağmen; çatı sistemi ve çatı kaplama sistemi tasarımında başvurulması için yeterli bir kaynak olmadığı görülmüştür. Yapı elemanlarının bütünüyle ilgili genel-geçer kuralları içermesinden ve rüzgar güvenliğine yabancı standartlara kıyasla çok az yer vermesinden dolayı; yapı ve yapı elemanlarının rüzgâr yüklerine göre tasarımı ile ilgili bazı temel eksiklikler tespit edilmiştir. Standartta;  Tanımlı rüzgar bölgeleri bulunmamaktadır.  Yalnızca minimum rüzgar yükleri tanımlanmıştır.

 Çatı biçimleri göz önünde tutulmamıştır.

 Çatı saçaklarında veya parapetlerinde rüzgar güvenliğine yönelik ek bir önlem veya hesaptan yararlanılmamıştır.

 Kaplama malzeme ve sistemlerine değinilmemiştir.

 Çatıya yönelik değil; tüm yapı elemanlarına yöneliktir.  Bu nedenle derlenen kontrol listesinin standartla uyumlu hale getirilmesi için TS 498’in de geliştirilerek, sağlıklı sonuçlara ulaşmayı kolaylaştırıcı bir yaklaşım benimsenmesinin gerekliliği ortaya çıkmıştır. 

 

Kaynakça [1] Binan, M., 2010. Ahşap Çatılar, İstanbul: Birsen Yayınevi. [2] Çatıder, 2007. Çatı Kaplama Malzemeleri Uygulama Detayları Kılavuzu, Çatı Sanayici ve İşadamları Derneği, İstanbul: Altan Basım Ltd.. [3] Patterson,S., Mehta, M., 2001. Roofing Design and Practice, Upper Saddle River, N.J.: Prentice Hall. [4] Schunck, E., Oster, H. J., Barthel, R. Kiessl, K., 2003. Roof Construction Manual: Pitched Roofs, Basel: Birkhäuser. [5] Griffin, C.W., Fricklas, R.L., 1996. Manual of Low-Slope Roof Systems, Boston: McGraw Hill. [6] Crosbie, M. J., Perry, D., Smith, T., 1997. Buildings at Risk: Wind Design Basics for Practicing Architects. AIA. [7] Alassafin, W., Baskaran, A., Martin-Perez, B. and Tanaka, H., 2014. Testing the wind uplift resistance of roof edge components. In: International Conference on Building Envelope Systems and Technologies ICBEST 2014 proceedings. Aachen, Almanya. [8] Perry, Dale, ve Beason, 1991. Section V: Hazard-Building Interaction, ATC 26-2. [9] Miyauchi, H., Ishihara, S. Bartko, M., Katou, N. ve Tanaka, H., 2014. Development of Wind Resistance Evaluation Methods for Mechanically Anchored Waterproofing Membrane System in Japan. In: International Conference on Building Envelope Systems and Technologies ICBEST 2014 proceedings. Aachen, Almanya. [10] https://www.fema.gov/media-library-data/20130726-1536-20490-6626/fema499_7_6.pdf; son internet erişimi: 13.03.2016 [11]ASCE 7-05, 2005. Minimum Design Loads for Buildings and Other Structures, Structural Engineering Institute of the American Society of Civil Engineers. [12]TS 498, 1997-11.Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri, Ankara: TSE. [13]Underwriters Laboratories, 2010 (2). Certifying Roof Deck Constructions for Wind Resistance: An uplifting experience, The Code Authority. [14]DIN 18339:2012-09 VOB Vergabe- und Vertragsordnung für Bauleistungen - Teil C: Allgemeine Technische Vertragsbedingungen für Bauleistungen (ATV) – Klempnerarbeiten (German construction contract procedures (VOB) - Part C: General technical specifications in construction contracts (ATV) - Sheet metal roofing and wall covering work), Berlin: Beuth Verlag. [15]Winsel, C., 2013. Kommentar zu VOB/C: ATV DIN 18339 Klempnerarbeiten, Berlin: Beuth Verlag.